
Reinforcement Learning for Weakly-Coupled MDPs and
an Application to Planetary Rover Control

Daniel S . Bernstein and Shlomo Zilberstein

Department of Computer Science, University of Massachusetts,
Amherst, Massachusetts 01003

{bern, shlomo}@cs .mass. edu

Abstract. Weakly-coupled Markov decision processes can be decomposed into
subprocesses that interact only through a small set of bottleneck states. We study
a hierarchical reinforcement learning algorithm designed to take advantage of
this particular type of decomposability. To test our algorithm, we use a decision-
making problem faced by autonomous planetary rovers. In this problem, a Mars
rover must decide which activities to perform and when to traverse between sci-
ence sites in order to make the best use of its limited resources. In our exper-
iments, the hierarchical algorithm performs better than Q-learning in the early
stages of learning, but unlike Q-learning it converges to a suboptimal policy. This
suggests that it may be advantageous to use the hierarchical algorithm when train-
ing time is limited.

1 Introduction

The Markov decision processes (MDP) framework is widely used to model problems
in decision-theoretic planning and reinforcement learning [6]. Recently there has been
increased interest in delimiting classes of MDPs that are naturally decomposable and
developing special-purpose techniques for these classes [11. In this paper, we focus on
reinforcement learning for weakly-coupled MDPs. A weakly-coupled MDP is an MDP
that has a natural decomposition into a set of subprocesses. The transition from one
subprocess to another requires entry into one of a small set of bottleneck states. Because
the subprocesses are only connected through a small set of states, they are “almost”
independent. The common intuition is that weakly-coupled MDPs should require less
computational effort to solve than arbitrary MDPs.

The algorithm that we investigate is a reinforcement learning version of a previously
studied planning algorithm for weakly-coupled MDPs [2]. The planning algorithm is
model based, whereas our algorithm requires only information from experience trajec-
tories and knowledge about which states are the bottleneck states. This can be beneficial
for problems where only a simulator or actual experience are available. Our algorithm
fits into the category of hierarchical reinforcement learning (see, e.g., [7]) because i t
learns simultaneously at the state level and at the subprocess level. We note that other
researchers have proposed methods for solving weakly-coupled MDPs 13-51, but very
little work has been done in a reinforcement learning context.

For experimentation we use a problem from autonomous planetary rover control that
can be modeled as a weakly-coupled MDP. In our decision-making scenario, a rover on

Mars must explore a number of sites over the course of a day without stopping to estab-
lish communication with Earth. Using only a list of sites, information about its resource
levels, and information about the goals of the mission, the rover must decide which
activities to perform and when to move from one site to the next. Limited resources
and nondeterministic action effects make the problem nontrivial. In the main body of
the paper, we describe in detail how this problem can be modeled as a weakly-coupled
MDP, with each site being a separate subprocess.

We compare the hierarchical algorithm with Q-learning, and we see that the hierar-
chical algorithm performs better initially but fails to converge to the optimal policy. A
third algorithm which is given the optimal values for the bottleneck states at the start ac-
tually learns more slowly than both of the aforementioned algorithms. We give possible
explanations for the observed behavior and suggestions for future work.

2 MDPs and Reinforcement Learning

A Markov decision process (MDP) models an agent acting in a stochastic environment
with the aim of maximizing its expected long-term reward. The type of MDP we con-
sider contains a finite set S of states, with s~ being the start state. For each state s E S,
A, is a finite set of actions available to the agent. P is the table of transition probabil-
ities, where P(s'ls,a) is the probability of a transition to state s' given that the agent
performed action a in state s. R is the reward function, where R(s,a) is the reward
received by the agent given that it chose action a in state s.

A policy T is a mapping from states to actions. Solving an MDP amounts to finding a
policy that maximizes the expected long-term reward. In this paper, we use the infinite-
horizon discounted optimality criterion. Formally, the agent should maximize

m

E Lo C7~R(St ,T (St))] ,

where 7 E [0,1] is the discount factor. In order to model episodic tasks, we can include
an absorbing state from which the agent can only receive an immediate reward of zero;
a transition to the absorbing state corresponds to the end of an episode.

Algorithms for MDPs often solve for valrcefunctions. For a policy K. the state value
function, V X (s) , gives the expected total reward starting from state s and executing T.

The state-action value function, Qn(s , a), gives the expected total reward starting from
state s, executing action a, and executing K from then on.

When an explicit model is available, MDPs can be solved using standard dynamic
programming techniques such as policy iteration or value iteration. When only a simu-
lator or real experience are available, reinforcement learning methods are a reasonable
choice. With these techniques, experience trajectories are used to learn a value function
for a good policy. Actions taken on a trajectory are usually greedy with respect to the
current value function, but exploratory actions must also be taken in order to discover
better policies. One widely-used reinforcement learning algorithm is Q-learning [8] ,
which updates the state-action value function after each transition from s to s' under

action a with the following rule:

Q(s, a) + Q(s, 4 + a [W s , 4 + 7 yxQ(s‘,a‘) - Q(s, a)] ,

where a is called the learning rate.

3 Reinforcement Learning for Weakly-Coupled MDPs

Consider an MDP with a state set S that is partitioned into disjoint subsets SI,. . . , S,.
The out-space of a subset Si, denoted O(Si), is defined to be the set of states not in Si
that are reachable in one step from Si. The set of states B = O(S1) U . U O(S,) that
belong to the out-space of at least one subset comprise the set of bottleneck states. If
the set of bottleneck states is relatively small, we call the MDP weakly-coupled.

In [2], the authors describe an algorithm for weakly-coupled MDPs that can be
described as a type of policy iteration. Initially, values for the bottleneck states are set
arbitrarily. The low-level policy improvement phase involves solving each subproblem,
treating the bottleneck state values as terminal rewards. The high-level policy evaluation
phase consists of reevaluating the bottleneck states for these policies. Repeating these
phases guarantees convergence to the optimal policy in a finite number of iterations.

The rules for backpropagating value information in our reinforcement learning algo-
rithm are derived from the two phases mentioned above. Two benefits of our approach
are that it doesn’t require an explicit model and that learning can proceed simultane-
ously at the high level and at the low level.

We maintain two different value functions: a low-level state-action value function
Q defined over all state-action pairs and a high-level state value function vh defined
over only bottleneck states. The low-level part of the learning is described as follows.
Upon a transition to a non-bottleneck state, the standard Q-learning backup is applied.
However, when a bottleneck state s’ E B is encountered, the following backup rule is
used:

Q(s , a) +- Q(S, a) + ai [R(s, a) + 7vhb’) - Q(s, 41 I

where a[is a learning rate. For the purposes of learning, the bottleneck state is treated
as a terminal state, and its value is the terminal reward. High-level backups occur only
upon a transition to a bottleneck state. The backup rule is:

where IC denotes the number of time steps elapsed between the two bottleneck states, R
is the cumulative discounted reward obtained over this time, and a h is a learning rate.

It is possible to alternate between phases of low-level and high-level backups or
to perform the backups simultaneously. Whether either approach converges to an op-
timal policy is an open problem. We chose the latter for our experiments because our
preliminary work showed it be more promising.

4 Autonomous Planetary Rover Control

4.1 The Model

In this section we describe a simple version of the rover decision-making problem and
how it fits within the weakly-coupled MDP framework. In our scenario, a rover is to
operate autonomously for a period of time. It has an ordered sequence of sites along
with priority information and estimated difficulty of obtaining data, and it must make
decisions about which activities to perform and when to move from one site to the
next. The goal is to maximize the amount of useful work that gets done during the time
period.

The action set consists of taking a picture, performing a spectrometer experiment,
and traversing to the next site in the sequence. Spectrometer experiments take more
time and are more unpredictable than pictures, but they yield better data. The time to
traverse between sites is a noisy function of the distance between the sites. The state
features are the time remaining in the day, the current site number (from which priority
and estimated difficulty are implicitly determined), the number of pictures taken at the
current site, and whether or not satisfactory spectrometer data has been obtained at the
current site. Formally, S = T x I x P x E, where T = (0 min, 5 min, . . . ,300 min)
is the set of time values; I = (1,2,3,4,5} is the set of sites; P = (0,1,2} is the set
of values for pictures taken; and E = (0,1} is the set of values for the quality of the
spectrometer data. The start state is $0 = (300,1,0,0). The sequence of sites used for
our experiments is shown in Table 1.

Table 1. The sequence of sites for the rover to investigate

Site I Priority I Estimated difficulty I Distance to next site
medium 3 m

A nonzero reward can only be obtained upon departure from a site and is a function
of the site’s priority and the dataobtained at the site. The task is episodic with 7 = 1. An
episode ends when the time component reaches zero or the rover finishes investigating
the last site. The aim is to find a policy that maximizes the expected total reward across
all sites investigated during an episode. Because of limited time and nondeterministic
action effects, the optimal action is not always obvious.

In order to see how this problem fits into the weakly-coupled MDP framework,
consider the set of states resulting from a traversal between sites. In all of these states,
the picture and spectrometer components of the state are reset to zero. The set B =
T x I x (0) x (0) is taken to be the set of bottleneck states, and it is over this set that
we define the high-level value function. Note that the bottleneck states comprise only
300 of the problem’s 1,800 states.

4.2 Experiments

In our experiments, we tested Q-learning against the hierarchical algorithm on the prob-
lem mentioned in the previous section. In addition, we tested an algorithm that we call
the omniscient hierarchical learning algorithm. This algorithm is the same as the hier-
archical algorithm, except that the values for the bottleneck states are fixed to optimal
from the start, and only low-level backups are performed. By fixing the bottleneck val-
ues, the problem is completely decomposed from the start. Of course, this cannot be
done in practice, but it is interesting for the purpose of comparison.

For the experiments, all values were initialized to zero, and we used e-greedy ex-
ploration with e = 0.1 [6]. For the results shown, all of the learning rates were set to
0.1 (we obtained qualitatively similar results with learning rates of 0.01,0.05, and 0.2).
Figure 1 shows the total reward per episode plotted against the number of episodes of
learning. The points on the curves represent averages over periods 1000 episodes.

m

E‘
2 -

Hierarchical learning
++m Ornn. Hierarchical learning

e!

5
+ m

- a -

‘ O f 1

Fig. 1. Learning curves for Q-learning. hierarchical learning, and omniscient hierarchical learning

A somewhat counterintuitive result is that the omniscient hierarchical algorithm
performs worse than both the original hierarchical algorithm and Q-learning during
the early stages. One factor contributing to this is the initialization of the state-action
values to zero. During the early episodes of learning, the value of the “leave” action
grows more quickly than the values for the other actions because it is the only one that
leads directly to a highly-valued bottleneck state. Thus the agent frequently leaves a
site without having gathered any data. This result demonstrates that decomposability
doesn’t always guarantee a more efficient solution.

The second result to note is that the hierarchical algorithm performs better than Q-
learning initially, but then fails to converge to the optimal policy. It is intuitively plausi-
ble that the hierarchical algorithm should go faster, since it implicitly forms an abstract
process involving bottleneck states and propagates value information over multiple time
steps. It also makes sense that the algorithm doesn’t converge once we consider that the
high-level backups are oflpolicy. This means that bottleneck states are evaluated for the
policy that is being executed, and this policy always includes non-greedy exploratory

actions. Algorithms such as Q-learning, on the other hand, learn about the policy that
is greedy with respect to the value function regardless of which policy is actually being
executed.

5 Conclusion

We studied a hierarchical reinforcement learning algorithm for weakly-coupled MDPs,
using a problem in planetary rover control as a testbed. Our results indicate that the
decomposability of these problems can lead to greater efficiency in learning, but the
conditions under which this will happen are not yet well understood. Perhaps exper-
imentation with different low-level and high-level learning rates could shed some in-
sight. Also, experimental results from other weakly-coupled MDPs besides the rover
problem would be valuable. Finally, a more detailed theoretical investigation may yield
an algorithm similar to ours that is provably convergent.

On the application side, we plan to develop a more realistic and complex simulator
of the rover decision-making problem. In this simulator, the rover will choose among
multiple sites to traverse to. It will also have to manage its data storage and battery
capacity and perform activities during constrained time intervals. The state space of the
model will most likely be too large to explicitly store a value for each state. We will
instead have to use some form of function approximation.

Acknowledgements

The authors thank Rich Washington, John Bresina, Balaraman Ravindran, and Ted Perkins for
helpful conversations. This work was supported in part by the NSF under grants IRI-9624992
and 11s-9907331, and by NASA under grants NAG-2-1394 and NAG-2-1463. Daniel Bernstein
was supported by an NSF Graduate Research Fellowship and a NASA SSRP Fellowship. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not reflect the views of the NSF or NASA.

References

1. Boutilier, C., Dean, T. & Hanks, S. (1999). Decision-theoretic planning: Structural assump-
tions and computational leverage. Journal of Artificial Intelligence Research, I , 1-93.

2. Dean, T. & Lin, S.-H. (1995). Decomposition techniques for planning in stochastic domains.
In IJCAI-95.

3. Foreister, J.-P. & Varaiya, P. (1978). Multilayer control of large Markov chains. IEEE Trans-
actions on Automatic Control, 23(2), 298-304.

4. Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean, T. 19 Boutilier, C. (1998). Hierarchical
solution of Markov decision processes using macro-actions. In UAI-98.

5. Parr, R. (1998). Flexible decomposition algorithms for weakly coupled Markov decision
problems. In UAI-98.

6. Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge,
MA: MIT Press.

7. Sutton, R. S., Precup, D. & Singh, S. (2000). Between MDPs and Semi-MDPs: Learning,
planning, and representing knowledge at multiple temporal scales. Artificial Intelligence,

8. Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, Cambridge University,
112,181-211.

Cambridge, England.

